Документ подписан простой электронной подписью Информация о владельце:

ФИО: Савченко Сергей Александрович

Должность: Зумстивная востронная прожарно-Спасательная академия — академии-филала занкт Петербургского чиверскиета ПСМУ России по учебно-научной разове учебно-научной разове Дерального учреждения высшего образования учикальный постаний постаний постаний учикальный постаний университет государственной еес85с61с10b2c390685a1b1e1e60a00cd448c84

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ И ЭЛЕКТРОНИКИ

Бакалавриат по направлению подготовки 20.03.01 Техносферная безопасность Направленность (профиль) «Пожарная безопасность»

1. Цели и задачи дисциплины

Цель освоения дисциплины:

- формирование целостного мировоззрения и развитие системноэволюционного стиля мышления;
- формирование системы знаний как фундаментальной базы инженерной подготовки;
- формирование навыков по грамотному применению электротехнических приборов и электрооборудования;
- приобретение обучающимися знаний, необходимых для понимания физических процессов, происходящих в электрических цепях, принципов действия электрических машин, электронных устройств и приборов.

В процессе освоения дисциплины «Основы электротехники и электроники» обучающийся формирует и демонстрирует нормативно заданные компетенции, приведенные в таблице 1.

TT		
HANGIIAIII IZOMITATAIIIIIIII	Th ()	ΤΗΙΚΗΠΙΚΙΝΙΝΗ ΒΚΙΠΔΙΙΚΟΚΙ ΔΥΥΔΠΛΗΝ Ο ΥΓΙΜΑΚΝΚΙΜΝ
TICDCACHD RUMHCICHHIAN	wu	ормируемых в процессе изучения дисциплины

Компетенции	Содержание
УК-1	Способен осуществлять поиск, критический анализ и синтез
	информации, применять системный подход для решения поставленных
	задач.
ОПК-1	Способен учитывать современные тенденции развития техники и
	технологий в области техносферной безопасности, измерительной и
	вычислительной техники, информационных технологий при решении
	типовых задач в области профессиональной деятельности, связанной с
	защитой окружающей среды и обеспечением безопасности человека
ОПК-2	Способен обеспечивать безопасность человека и сохранение
	окружающей среды, основываясь на принципах культуры безопасности
	и концепции риск-ориентированного мышления
ПК-3	Способен на основе законов электротехники прогнозировать и
	оценивать пожарную опасность, осуществлять разработку способов и
	мер обеспечения пожарной безопасности электроустановок и
	электротехнических изделий.

Задачи дисциплины:

- изучение основных законов электротехники и границ их применимости;
- овладение фундаментальными принципами и методами решения научнотехнических задач;
- формирование представлений о назначение, области применения, принципов построения и функционирования электрических машин, цепей и электронных схем.

2. Перечень планируемых результатов обучения дисциплины, соотнесенных с планируемыми результатами освоения образовательной программы

pojuzium pojuzium oczo	* * *				
H	Планируемые результаты обучения по				
Индикаторы достижения компетенции	дисциплине «Основы электротехники и				
VIC 1 C C	электроники»				
УК-1. Способен осуществлять поиск,	УК-1.1. Знает принципы сбора, отбора и				
критический анализ и синтез информации,					
применять системный подход для решения	УК-1.2. Умеет анализировать и				
поставленных задач	*				
	систематизировать разнородные данные,				
	оценивать эффективность процедур анализа				
	проблем и принятия решений в профессиональной деятельности.				
	УК-1.3. Владеет навыками научного поиска и				
	практической работы с информационными				
	источниками; методами принятия решений.				
ОПК-1. Способен учитывать современные	ОПК-1.1. Знает современные информационные				
тенденции развития техники и технологий в	технологии и программные средства, в том числе				
области техносферной безопасности,	отечественного производства для решения задач				
измерительной и вычислительной техники,	профессиональной деятельности.				
информационных технологий при решении	ОПК-1.2. Умеет выбирать современные				
типовых задач в области профессиональной	средства обеспечения пожарной безопасности				
деятельности, связанной с защитой	объектов и оповещения людей, в том числе				
	отечественного производства для решения				
окружающей среды и обеспечением безопасности человека	задач профессиональной деятельности.				
Оезопасности человека	ОПК-1.3. Владеет навыками применения				
	современных средств индивидуальной и				
	коллективной защиты, в том числе				
	отечественного производства, при решении				
	задач профессиональной деятельности.				
ОПК-2. Способен обеспечивать					
безопасность человека и сохранение					
окружающей среды, основываясь на	экономических и организационно-технических				
принципах культуры безопасности и	систем, правовую и нормативно-техническую				
концепции риск-ориентированного	документацию по охране труда, промышленной безопасности охране окружающей среды.				
мышления	ОПК-2.2. Умеет производить оценку				
	обеспечения безопасности человека и				
	окружающей среды исходя из уровня				
	допустимого риска.				
	ОПК-2.3. Владеет навыками выбор методов				
	и/или средств обеспечения безопасности				
	человека и безопасности окружающей среды,				
	отвечающих требованиям в области обеспечения				
	безопасности, снижения рисков, в том числе в				
	области минимизации вторичных негативных				
	воздействий.				
ПК-3. Способен на основе законов	ПК-3.1. Знает критерии и показатели надежности				
электротехники прогнозировать и оценивать					
пожарную опасность, осуществлять	связанных с получением, передачей и				
разработку способов и мер обеспечения	потреблением электроэнергии.				
пожарной безопасности электроустановок и	ПК-3.2. Умеет проводить проверку расчетов				
электротехнических изделий	технических задач, связанных с обеспечением				
	пожарной безопасности электроустановок.				
	ПК-3.3. Владеет навыками организации				
	измерений характеристик технических объектов				

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к базовой части основной профессиональной образовательной программы бакалавриата по направлению подготовки 20.03.01 Техносферная безопасность, направленность (профиль) «Пожарная безопасность».

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа.

4.1 Распределение трудоемкости дисциплины по видам работ по семестрам для очной формы обучения

Вид учебной работы		Трудоемкость				
			ПО			
Вид учестои рассты	3.e.	час.	семестрам			
			5			
Общая трудоемкость дисциплины по учебному	2	72	72			
плану						
Контактная работа, в том числе:		54	54			
Аудиторные занятия		54	54			
Лекции		8	8			
Практические занятия		18	18			
Лабораторные работы		28	28			
Самостоятельная работа		18	18			
Контроль						
Зачет с оценкой		+	+			

4.2 Распределение трудоемкости дисциплины по видам работ по семестрам для заочной формы обучения

Вид учебной работы		Трудоемкость				
				ПО		
and i tomor pure 121	3.e.	час.	ку	рсам		
			3	4		
Общая трудоемкость дисциплины по учебному	2	72	36	36		
плану						
Контактная работа, в том числе:		12	4	8		
Аудиторные занятия		12	4	8		
Лекции (Л)		2	2			
Практические занятия (ПЗ)		6		4		
Семинарские занятия (СЗ)						
Лабораторные работы (ЛР)		4	2	4		
Консультации перед экзаменом						
Самостоятельная работа (СРС)		60	32	28		
Зачет с оценкой		+		+		

4.3. Тематический план, структурированный по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий для очной формы обучения

			Количество часов по видам занятий					12.8
№ п/п	Наименование тем	Всего часов	Лекции	Практические/	Лабораторные работы	Консультация	Контроль	Самостоятельная работа
1	Тема 1 «Электрический ток»	14	2	8				4
2	Тема 2 «Электрические измерения»	22	2		16			4
3	Тема 3 «Типовое электротехническое оборудование»	8		4				4
4	Тема 4 «Полупроводниковые, электронные, ионные приборы»	28	4	6	12			6
	Зачет с оценкой						+	
	Итого	72	8	18	28			18

4.4. Тематический план, структурированный по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий для заочной формы обучения

№ п/п	<u>ъ́</u> п/п		Количество часов по видам занятий				гая	
	Наименование тем	Всего часов	Лекции	Практические, занятия	Лабораторные работы	Контроль	Самостоятельная работа	
1	Тема №1. Электрический ток.	19	2	2			15	
2	Тема №2. Электрические измерения.	17			2		15	
3	Тема №3. Типовое электротехническое оборудование.	17			2		15	
4	Тема №4. Полупроводниковые, электронные, ионные приборы.	19		4			15	

Зачет с оценкой				+	
Итого	2	6	4		60

4.5 Содержание дисциплины для очной формы обучения

Тема 1. Электрический ток

Лекция. Постоянный электрический ток.

Электрические цепи синусоидального переменного тока. Расчет электрических цепей однофазного переменного тока. Методика расчета трехфазных цепей при соединении потребителей «звездой» и «треугольником».

Практическое занятие. Тепловое действие электрического тока. Влияние на сопротивление проводников температуры нагрева.

Самостоятельная работа. Выполнение индивидуального задания № 1 «Расчет однофазных цепей переменного тока».

Расчет цепей при соединении потребителей «звездой» и «треугольником».

Рекомендуемая литература:

основная [1-7]; дополнительная [1, 2].

Тема 2. Электрические измерения

Лекция. Измерение основных параметров электрических цепей.

Лабораторная работа. Исследование цепей однофазного тока с последовательным соединением активного, индуктивного и емкостного сопротивлений. Исследование цепей однофазного тока с параллельным соединением активного, индуктивного емкостного сопротивлений. И Исследование цепей трехфазного тока при включении потребителей звездой. цепей трехфазного тока потребителей Исследование включении при треугольником.

Самостоятельная работа.

Классификация электроизмерительных приборов. Обозначения на шкалах электроизмерительных приборов и погрешности измерений. Анализ распределения потенциалов в разветвленной цепи постоянного тока. Расчет разветвленной цепи постоянного тока. Анализ выполнения основных законов электрических цепей.

Рекомендуемая литература:

основная [1-7]; дополнительная [1,5].

Тема 3. Типовое электротехническое оборудование

Практическое занятие. Трансформаторы переменного тока. Асинхронные двигатели.

Самостоятельная работа.

Назначение и принцип работы электроприводов, их режимы работы.

Устройство и принцип действия синхронных двигателей.

Назначение и классификация электротехнической аппаратуры.

Рекомендуемая литература:

основная [5];

дополнительная [1, 3].

Тема 4. Полупроводниковые, электронные, ионные приборы

Лекция. Полупроводниковые диоды. Электронные усилители.

Практическое занятие. Транзисторы и тиристоры. Электронные генераторы. Элементы блоков электрического питания.

Лабораторная работа. Исследование полупроводниковых диодов и биполярных транзисторов. Исследование усилителя на биполярном транзисторе. Исследование генератора гармонических колебаний.

Самостоятельная работа.

Классификация и система обозначений полупроводниковых диодов.

Полупроводниковые резисторы.

Классификация и система обозначений транзисторов и тиристоров.

Электрический разряд в газах.

Ионные (индикаторные) приборы.

Фотоэлектрические приборы.

Классификация электронных усилителей.

Стабилизация частоты электронных генераторов.

Логические элементы.

Триггеры.

Цифровые интегральные микросхемы

Аналоговые интегральные микросхемы.

Устройство и принцип работы компенсационного стабилизатора напряжения.

Устройство и принцип работы электронных преобразователей напряжения.

Устройство и принцип работы электронного реле.

Рекомендуемая литература:

основная [1-3];

дополнительная [1, 2].

4.6 Содержание дисциплины для заочной формы обучения

Тема 1. Электрический ток

Лекция.

Постоянный электрический ток. Расчет электрических цепей однофазного переменного тока. Расчет трехфазных цепей при соединении потребителей «звездой» и «треугольником».

Практическое занятие.

Электрические цепи синусоидального переменного тока.

Самостоятельная работа.

Тепловое действие электрического тока. Влияние на сопротивление проводников температуры нагрева. Свойства цепей переменного тока, характеризуемых одним параметром (либо R, либо X_L , либо X_C). Свойства цепей переменного тока, характеризуемых параметрами R, X_L , X_C . Выполнение

индивидуального задания № 1 "Расчет однофазных цепей переменного тока". Виды соединений фазных обмоток генератора и приемника электроэнергии. Методика расчета цепей при соединении потребителей «звездой». Методика расчета цепей при соединении потребителей «треугольником».

Рекомендуемая литература

основная [1, 7]; дополнительная [1, 4].

Тема 2. Электрические измерения

Лабораторная работа.

Измерение основных параметров электрических цепей.

Самостоятельная работа.

Классификация электроизмерительных приборов. Обозначения на шкалах электроизмерительных приборов и погрешности измерений.

Рекомендуемая литература

основная [1, 7]; дополнительная [1, 2].

Тема 3. Типовое электротехническое оборудование Лабораторная работа.

Трансформаторы переменного тока. Асинхронные двигатели.

Самостоятельная работа.

Назначение и принцип работы электроприводов, их режимы работы. Устройство и принцип действия синхронных двигателей. Назначение и классификация электротехнической аппаратуры

Рекомендуемая литература

основная [1, 7]; дополнительная [1, 2].

Тема 4. Полупроводниковые, электронные, ионные приборы Практическое занятие.

Транзисторы и тиристоры. Элементы блоков электрического питания.

Самостоятельная работа.

Введение в курс электроники Электропроводность полупроводников. Свойства p-n перехода. Диоды. Классификация и система обозначений полупроводниковых диодов. Полупроводниковые резисторы. Классификация и система обозначений транзисторов и тиристоров. Электрический разряд в газах. Ионные (индикаторные) приборы. Фотоэлектрические приборы. Общие характеристики усилителей. Транзисторный усилительный каскад по схеме с общим эмиттером. Общие сведения об усилителях мощности. Классификация электронных усилителей. Параметры электрических сигналов.

Дифференцирующие и интегрирующие цепи. Последовательные и параллельные резонансные цепи. Назначение и классификация электронных генераторов. Условия самовозбуждения автогенератора. Транзисторный LC и RC автогенератор. Стабилизация частоты электронных генераторов. Электронные ключи Автоколебательные мультивибраторы. Ждущие мультивибраторы.

Логические элементы. Триггеры. Цифровые интегральные микросхемы Аналоговые интегральные микросхемы. Устройство и принцип работы компенсационного стабилизатора напряжения. Устройство и принцип работы электронных преобразователей напряжения. Устройство и принцип работы электронного реле.

Рекомендуемая литература основная [1, 5], дополнительная [1-3].

5. Методические рекомендации по организации изучения дисциплины

При реализации программы дисциплины основными видами учебных занятий являются лекции, практические занятия и лабораторные работы.

Целями лекции являются:

- дать систематизированные научные знания по дисциплине, акцентировав внимание на наиболее сложных и узловых вопросах темы курса;
- стимулировать активную познавательную деятельность обучающихся, способствовать формированию их творческого мышления.

Целями лабораторной работы являются:

- совершенствование умений и навыков решения практических задач,
- освоение навыков заполнения и подготовки юридических документов (бланков).

Главным содержанием этого вида учебных занятий является работа каждого обучающегося по овладению практическими умениями и навыками профессиональной деятельности путем решения ситуативных задач, составления служебных документов, отработки алгоритмов деятельности в типичных и нестандартных ситуациях.

Целями практических занятий являются:

- совершенствование умений и навыков решения практических задач,
- освоение навыков заполнения и подготовки юридических документов (бланков).

Главным содержанием этого вида учебных занятий является работа каждого обучающегося по овладению практическими умениями и навыками профессиональной деятельности путем решения ситуативных задач, составления служебных документов, отработки алгоритмов деятельности в типичных и нестандартных ситуациях.

Самостоятельная работа обучающихся направлена на углубление и закрепление знаний, полученных на лекциях и других занятиях, выработку навыков самостоятельного активного приобретения новых, дополнительных знаний, подготовку к предстоящим учебным занятиям, экзамену.

Изучение дисциплины заканчивается зачетом с оценкой.

6. Оценочные материалы по дисциплине

Текущий контроль успеваемости обеспечивает оценивание хода освоения дисциплины, проводится в соответствии с содержанием дисциплины по видам

занятий в форме задач, тестирования.

Промежуточная аттестация обеспечивает оценивание промежуточных и окончательных результатов обучения по дисциплине, проводится в форме зачета с оценкой.

6.1. Примерные оценочные материалы текущего контроля Типовые задачи:

- 1. Нарисуйте схему, определите величину и фазу тока в цепи при параллельном подключении сопротивлений $z_1 = 4 + j5_W$ $z_2 = 2 j7_{\text{на напряжение}} \sim 127B.$
- 2. Нарисуйте схему и определите активную, реактивную и полную мощность в цепи последовательным включением сопротивлений $Z_1 = 2 j3$ и $Z_2 = 3 + j$ и на напряжение ~220B.
- 3. Нарисуйте схему и определите активную, реактивную и полную мощность в цепи с параллельным включением сопротивлений $Z_1 = 3 + j4$ и $Z_2 = 2 j2$ на напряжение ~220B.
- 4. Нарисовать схему и определить ток и соѕф нагрузки однофазной цепи переменного тока 220 B, если в нее параллельно включены сопротивления $Z_1 = 7 j2$ и $Z_2 = 3 + j5$.
- 5. Определите номинальный момент трехфазного асинхронного двигателя, имеющего M_{max} = 24 H·м, $S_{\kappa p}$ = 11%, номинальную скорость вращения ротора n_2 = 1440 об/мин и скорость изменения магнитного поля статора n_1 = 1500 об/мин.
- 6. Определите полезный момент M_2 , развиваемый трехфазным асинхронным двигателем на валу при потребляемой двигателем мощности $P_1 = 3.0$ кВт, $\eta = 0.78$, скорости вращения ротора $n_2 = 1425$ об/мин.
- 7. Определите частоту тока в роторе f_2 трехфазного асинхронного двигателя, включенного в сеть переменного тока частотой $f_1=50\Gamma$ ц, если он имеет скорость вращения $n_2=2835$ об/мин при скорости изменения магнитного поля статора $n_1=3000$ об/мин.
- 8. Является ли цепь из резистора 120 кОм и конденсатора емкостью 100 пФ интегрирующей для импульса длительностью 100 мкс?
- 9. Определить, какова должна быть активное сопротивление схемы, чтобы добротность колебательного контура была равна 15 на частоте 30 МГц при емкости конденсатора 30 пФ.
- 10. Каково должно быть сопротивление резистора интегрирующей цепи при емкости конденсатора 120 пФ и длительности импульса 10 мкс?
- 11. Определить длительность импульса ждущего мультивибратора, если емкость конденсатора равна 3100пф, сопротивление резистора 150 кОм.

Типовые задания для тестирования:

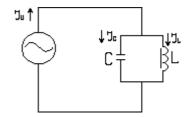
- 1. Как ведет себя ток по отношению к напряжению в цепях переменного тока с чисто активным сопротивлением?
 - а) совпадает по фазе с напряжением;
 - б) отстает по фазе от напряжения;
- в) опережает по фазе напряжение.
- 2. Как называется сопротивление цепи постоянного тока?
 - а) омическое.
 - б) реактивное;
 - в) активное.
- 3. На какое соединение трехфазной системы указывает данное выражение?

$$I_{\pi} = I_{\phi};$$

- $U_{\pi} = \sqrt{3} U_{\Phi}$
- а) соединение потребителей системы звездой.
- б) соединение потребителей системы треугольником;
- 4. К чему приводит повышение коэффициента мощности?
- а) к уменьшению силы тока;
- б) к уменьшению потерь электрической энергии;
- в) к увеличению силы тока;
- г) к увеличению потерь электрической энергии.
- 5. Для какого соединения сопротивлений справедлива формула?

$$\mathbf{R}_{\text{\tiny 2KB}} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

- а) для параллельного соединения;
- б) для последовательного соединения;
- в) для смешанного соединения.
- 6. В чем измеряется реактивная мощность?
- a) $B \cdot A_{p}$
- б) B;
- в) B·A;
- г) A;
- д) Вт.
- 7. При соединении потребителей звездой U_{π} = 380B. Чему будет равно фазное напряжение?
- a) $U_{\phi} = 220B$;
- 6) $U_{\phi} = 127B$:
- $U_{\phi} = 380B$
- 8. Что означает данное выражение?


$$\sum EI = \sum RI^2$$

- а) баланс мощностей;
- б) первый закон Кирхгофа;

- в) второй закон Кирхгофа.
- 9. Место соединения трёх и более ветвей называется?
- *а) узлом.
- б) контуром;
- в) вершиной.
- 10. При последовательном соединении конденсаторов как будет меняться $C^{\text{общ}}$?
- а) не меняться;
- б) уменьшаться;
- в) увеличиваться.
- 11. При каких условиях возникает резонанс токов?
- а) при параллельном соединении и выполнения условия $X^{L} = X_{C}$.
- б) последовательном соединении элементов индуктивности и емкости;
- в) при параллельном соединении и выполнения условия $X^{c\langle X_L}$;
- г) при параллельном соединении и выполнения условия $\mathbf{X}^{L^{\neq X_C}}$.
- 12. Каким прибором измеряется сила тока?
- а) амперметром;
- б) мегомметром;
- в) ваттметром.
- 13. Какое должно быть сопротивление изоляции для силовых и осветительных проводов?
- а) не менее 0,5 МОм;
- б) не менее 1,5 МОм;
- в) не менее 2,0 МОм.
- 14. На какое соединение ёмкостей указывает данное выражение?

$$C_{\text{общ}} = C_1 + C_2 + \cdots + C_n$$

- а) параллельное;
- б) последовательное;
- в) смешанное.
- 15. Что произойдет с линейным напряжением $U_{\scriptscriptstyle \rm I}$ при обрыве одного линейного провода в соединении потребителей звездой с нулевым проводом?
- a) $U_{\pi} = U_{\varphi}$.
- 6) $U_{\pi} = 0$;
- $\text{B) }U_{\pi 1}$
- $=U_{\pi 2};$
- 16. Для чего нужен нулевой провод в осветительных сетях?
- а) обеспечения равенства фазных напряжений;
- б) обеспечения равенства сопротивлений нагрузки;
- в) обеспечения равенства линейных токов.
- 17. Как ведет себя ток в индуктивной ветви данной цепи относительно напряжения?

- а) отстаёт по фазе;
- б) опережает по фазе;
- в) находится в противофазе;
- г) совпадает по фазе.
- 18. Что необходимо сделать для уменьшения пускового тока у асинхронного двигателя (АД)?
- а) запустить АД при соединении его обмоток звездой;
- б) уменьшить напряжение сети.
- в) запустить АД при соединении его обмоток треугольником;
- 19. Во сколько раз увеличивается потребляемая мощность при включении потребителей треугольником по сравнению с включение звездой?
- а) в 3 раза;
- б) в 2 раза;
- в) в $\sqrt{2}$ раз;
- Γ) в $\sqrt{3}$ раз.
- 20. Что происходит с величиной коэффициента мощности \cos^{ϕ} при параллельном включении ёмкости к асинхронному двигателю?
- а) увеличивается;
- б) уменьшается;
- в) не изменяется;
- 21. Что произойдет с сопротивлением конденсатора, если увеличить частоту переменного тока?
- а) сопротивление уменьшится;
- б) сопротивление увеличится;
- в) сопротивление не изменится;
- 22. Во сколько раз больше пусковой ток по сравнению с номинальным у АД с фазным ротором?

a)
$$I_{\pi} = (2 \div 2.5)$$

$$I_{H}$$
;6) $I_{\Pi} = (9 \div$

12)
$$I_H$$
; B) $I_{\Pi} = (4 \div$

 $8)I_{H}$.

- 23. Для каких целей используют автотрансформатор?
- а) для изменения напряжения в небольших пределах;
- б) для расширения пределов измерения I; U;
- в) как обычный трансформатор.
- 24. С какой скоростью вращается ротор асинхронного двигателя (АД)?
- а) асинхронной;
- б) неодновременной.

- в) синхронной;
- г) одновременной;
- 25. Для чего предназначен трансформатор?
- а) для преобразования напряжения.
- б) для преобразования частоты;
- в) для преобразования мощности;
- 26. Какая должна быть скорость вращения ротора асинхронного двигателя (АД) относительно вращающегося поля статора?
- а) меньше частоты поля;
- б) равна частоте вращения поля;
- в) больше частоты вращения поля.
- 27. По какой из перечисленных формул можно вычислить коэффициент трансформации?
- a) $k = U_1/U_2$;
- δ) γ_{np} =

$$\Delta A/A_{\rm H}$$
; B) n =

 I/I_a ;

- Γ) $R_{III} = R_A (n 1)$.
- 28. Достоинством усилительного каскада на транзисторе по схеме с общим эмиттером **ОЭ** является:
- а. а) большой коэффициент усиления по напряжению;
- б. б) большое входное сопротивление каскада;
- в. в) большое выходное сопротивление каскада.
 - 29. Достоинством усилительного каскада на транзисторе по схеме с общей базой ОБ является:
- а. а) большое выходное сопротивление каскада;
- б. б) большой коэффициент усиления по напряжению;
- в. в) большое входное сопротивление каскада.
 - 30. Какая из приведенных формул позволяет определить величину частоты f резонанса колебательного контура?

а. a)
$$f = 1$$
 где: L – индуктивность катушки,

- б. С емкость конденсатора;
- в. б) $f = \sqrt{\frac{L}{C}}$ где: L индуктивность катушки,
- г. С емкость конденсатора;
- д. в) $f = \rho_R$ где: ρ волновое сопротивление,
- е. R омическое сопротивление.
 - 31. При обратном включении сопротивление полупроводникового диода:
- а. а) значительное (несколько МОм);
- б. б) незначительное (несколько Ом);
- в. в) зависит от частоты.
 - 32. Какая часть вольтамперной характеристики используется при работе стабилитронов?

а. а) обратная;

- б. б) прямая;
- в. в) в зависимости от силы тока.

6.1.1. Промежуточная аттестация

Примерный перечень вопросов, выносимых на зачет с оценкой

- 1. Электрическая цепь и ее элементы: определение тока, сопротивления, проводимости, ветви, узла, контура, схемы, аналитические соотношения.
- 2. Соединения источников постоянного тока: электрические схемы, вывод аналитических соотношений.
- 3. Свойства цепей переменного тока с чисто активным сопротивлением: электрическая схема, вывод аналитических соотношений, графическое представление, практические примеры.
- 4. Свойства цепей переменного тока с индуктивностью: электрическая схема, вывод аналитических соотношений, графическое представление, практические примеры.
- 5. Свойства цепей переменного тока с емкостью: электрическая схема, вывод аналитических соотношений, графическое представление, практические примеры.
- 6. Трехфазный переменный ток: получение, основные параметры, графическое представление, преимущество трехфазного тока перед однофазным.
- 7. Устройство, принцип действия и область применения приборов электромагнитной и приборов магнитоэлектрической системы, достоинства и недостатки.
- 8. Устройство и принцип действия автотрансформаторов и трехфазных масляных трансформаторов, достоинства и недостатки, пожарная опасность.
- 9. Устройство и принцип действия однофазных и двухфазных асинхронных двигателей.
- 10. Назначение, классификация, устройство, принцип работы полупроводникового диода.
- 11. Назначение, классификация, устройство, принцип работы и область применения полупроводниковых биполярных транзисторов.
- 12. Назначение, классификация, устройство, принцип работы и область применения полупроводниковых полевых транзисторов.
- 13. Назначение, устройство, принцип работы LC электронных генераторов гармонических электрических сигналов.
- 14. Дифференцирующая цепь. Условия дифференцирования электрического импульса.
- 15. Интегрирующая цепь. Условия интегрирования электрического импульса.
- 16. Классификация, характеристики и области применения электронных усилителей.
- 17. Назначение, устройство и принципы работы логических схем И-НЕ и ИЛИ-НЕ.
- 18. Назначение, устройство и принцип работы автоколебательного мультивибратора на транзисторах.

- 19. Назначение, принципиальная схема, принцип работы и область применения двухполупериодного выпрямителя.
 - Назначение, устройство и принцип работы сглаживающих фильтров. 20.

6.2. Шкала оценивания результатов промежуточной аттестации и критерии выставления оценок

Система оценивания включает:

Форма контроля	Показатели оценивания	Критерии выставления оценок	Шкала оценивания
зачет с оцен- кой	правильность и полнота от- вета	дан правильный, полный ответ на поставленный вопрос, показана совокупность осознанных знаний по дисциплине, доказательно раскрыты основные положения вопросов; могут быть допущены недочеты, исправленные самостоя-	отлично
		тельно в процессе ответа. дан правильный, недостаточно полный ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи; могут быть допущены недочеты, исправленные с помощью преподавателя. дан недостаточно правильный и полный ответ; логика и последовательность изложения имеют нарушения; в ответе отсутствуют вы-	хорошо удовлетворительно
		воды. ответ представляет собой разрозненные знания с существенными ошибками по вопросу; присутствуют фрагментарность, нелогичность изложения; дополнительные и уточняющие вопросы не приводят к коррекции ответа на вопрос.	неудовлетворитель- но

7. Ресурсное обеспечение дисциплины

7.1. Лицензионное и свободно распространяемое программное обеспечение

Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства:

- Astra Linux Common Edition релиз Орел Операционная система общего назначения "Astra Linux Common Edition"; ПО- 25В-603;
- 2. МойОфис Образование Полный комплект редакторов текстовых документов и электронных таблиц, а также инструментарий для работы с графическими

7.2. Профессиональные базы данных и информационные справочные системы

Информационная справочная система — Сервер органов государственной http://россия.рф/ Российской Федерации (свободный профессиональные базы данных — Портал открытых данных Российской Федерации https://data.gov.ru/ (свободный доступ); федеральный портал «Российское образование» http://www.edu.ru (свободный доступ); система официального опубликования правовых электронном актов В http://publication.pravo.gov.ru/ (свободный доступ); федеральный портал «Совершенствование государственного управления» https://ar.gov.ru (свободный библиотека http://elib.igps.ru доступ); электронная университета (авторизованный доступ); электронно-библиотечная система «ЭБС IPR BOOKS» http://www.iprbookshop.ru (авторизованный доступ); информационно-правовая «Гарант» http://www.garant.ru (свободный доступ); система электроннобиблиотечная система ЛАНЬ: https://e.lanbook.com (авторизованный доступ).

7.3. Литература

Основная литература:

- 1. Электротехника и пожарная безопасность электроустановок: учебное пособие / С. В. Воронин, А. Н. Емельянова, Ю. Г. Ксенофонтов [и др.]; ред. Б. В. Гавкалюк; МЧС России. СПб.: СПбУ ГПС МЧС России, 2022. 320 с.: рис., табл. URL: http://elib.igps.ru/?35&type=card&cid=ALSFR-5d33b6a0-8206-4495-8794-801b8614353c
- 2. Андрианов, Д. П. Основы электротехники и электроники. Практикум: учебное пособие / Андрианов Д. П. Москва, Вологда: Инфра-Инженерия, 2022. 180 с. URL: https://www.iprbookshop.ru/124221.html
- 3. Власов, А. Б. Задачи и методы их решения по курсу «Электротехника и электроника»: учебное пособие / А. Б. Власов. Москва, Вологда: Инфра-Инженерия, 2024. 252 с. URL: https://www.iprbookshop.ru/143601.html
- 4. Гордеев-Бургвиц, М. А. Общая электротехника и электроника: учебное пособие / М. А. Гордеев-Бургвиц. Москва: МИСИ-МГСУ, Ай Пи Ар Медиа, ЭБС АСВ, 2024. 331 с. URL: https://www.iprbookshop.ru/140491.html
- 5. Горденко, Д. В. Электротехника и электроника: практикум / Д. В. Горденко, В. И. Никулин, Д. Н. Резеньков. Москва: Ай Пи Ар Медиа, 2025. 123 с. URL: https://www.iprbookshop.ru/143939.html
- 6. Дробов, А. В. Электротехника и основы электроники: учебное пособие / А. В. Дробов, В. Н. Галушко. Москва, Вологда: Инфра-Инженерия, 2024. 364 с. URL: https://www.iprbookshop.ru/143639.html
- 7. Ермуратский, П. В. Электротехника и электроника: учебник / П. В. Ермуратский, Г. П. Лычкина, Ю. Б. Минкин. 3-е изд. Саратов: Профобразование,

Дополнительная литература:

- 1. Ковель, А. А. Электротехника. Краткий курс: учебное пособие / А. А. Ковель. Железногорск: Сибирская пожарно-спасательная академия ГПС МЧС России, 2021. 158 с. URL: https://www.iprbookshop.ru/119082.html
- 2. Лихачев, В. Л. Электротехника. Т.1: справочник / В. Л. Лихачев. Москва: СОЛОН-Пресс, 2021. 553 с. URL: https://www.iprbookshop.ru/142028.html
- 3. Лихачев, В. Л. Электротехника. Т.2: справочник / В. Л. Лихачев. Москва: СОЛОН-ПРЕСС, 2021. 448 с. URL: https://www.iprbookshop.ru/142043.html
- 4. Лыгин, М. М. Электротехника и основы электроники: учебное пособие / М. М. Лыгин, Г. П. Корнилов. Москва, Вологда: Инфра-Инженерия, 2024. 236 с. URL: https://www.iprbookshop.ru/143438.html
- 5. Пожаркова, И. Н. Электротехника и пожарная безопасность электроустановок. Лабораторный практикум: учебное пособие / И. Н. Пожаркова, А. Н. Лагунов. Железногорск: СПСА, 2019. 200 с. URL: https://e.lanbook.com/book/170761

7.4. Материально-техническое обеспечение

Для материально-технического обеспечения дисциплины используются помещения, которые представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой бакалавриата, оснащенные оборудованием и техническими средствами обучения: автоматизированное рабочее место преподавателя, маркерная доска, мультимедийный проектор, экран, наглядные пособия, иллюстрированные стенды, плакаты, компьютеры, посадочные места обучающихся.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде университета.

Автор: к.т.н., И. А. Гаранина